Skip to main content

Socket (TCP & UDP) communication in Java

Socket communication in Java enables communication between two endpoints over a network. There are two main types of sockets: TCP sockets and UDP sockets. Let's explain both types with examples: TCP Socket Communication: 1. **Server Side**:    - The server creates a `ServerSocket` object to listen for incoming connections on a specific port.    - When a client connects, the server accepts the connection and creates a `Socket` object to communicate with the client.    - The server reads from and writes to the socket's input and output streams to communicate with the client. import java.io.*; import java.net.*; public class TCPServer {     public static void main(String[] args) throws IOException {         ServerSocket serverSocket = new ServerSocket(12345);         System.out.println("Server started. Waiting for client...");         Socket clientSocket = serverSocket.accept();         System.out.println("Client connected.");         BufferedReader in = new Bu

The @Override annotation

The `@Override` annotation is used in Java to indicate that a method in a subclass is overriding a method with the same signature in its superclass. It is not mandatory to use `@Override`, but it helps in detecting errors during compilation if the method signature does not match any method in the superclass.


Here are some key points about `@Override`:


1. Purpose: It provides compile-time checking that a method is indeed overriding a method from a superclass. If there is a mismatch in the method signature (e.g., misspelling of method name, incorrect parameters), the compiler will generate an error.


2. Usage: `@Override` is placed immediately before the method declaration in the subclass that is intended to override a method in the superclass.


3. Compatibility: `@Override` annotation was introduced in Java 5. It can only be used with methods that are overriding a superclass method. If a method is not overriding a superclass method, using `@Override` will result in a compilation error.


4. Benefits: Helps in code maintenance and readability by clearly indicating that a method is intended to override a method from the superclass. It also ensures that the method signature is correct.


Here's an example demonstrating the usage of `@Override`:



class Animal {

    void makeSound() {

        System.out.println("Animal makes a sound");

    }

}


class Dog extends Animal {

    @Override

    void makeSound() { // Overriding the makeSound method from the superclass

        System.out.println("Dog barks");

    }

}


public class Main {

    public static void main(String[] args) {

        Animal animal = new Dog(); // Creating an instance of Dog but referenced as Animal

        animal.makeSound(); // Calls the makeSound method of Dog class

    }

}


In this example, the `makeSound()` method in the `Dog` class overrides the `makeSound()` method in the `Animal` class. The `@Override` annotation is used to explicitly indicate that the method is intended to override a method from the superclass. If there is a mistake in the method signature, such as misspelling `makeSound` as `makeSounds`, the compiler will generate an error, helping to catch errors early in the development process.

Comments

Popular posts from this blog

Method Overloading in Java

Method Overloading in Java Method Overloading  is a feature in Java that allows a class to have multiple methods with the same name but different parameter lists. The methods can have a different number or types of parameters. The decision on which method to invoke is made by the compiler based on the arguments provided during the method call.  Example: public class Calculator {     // Method to add two integers     public int add(int a, int b) {         return a + b;     }     // Method to add three integers     public int add(int a, int b, int c) {         return a + b + c;     }     // Method to add two doubles     public double add(double a, double b) {         return a + b;     }     // Method to concatenate two strings     public String concatenate(String str1, String str2) {         return str1 + str2;     } } Method Overloading in Action: public class Main {     public static void main(String[] args) {         Calculator calculator = new Calculator();         // Overloaded meth

Java Runtime Environment (JRE)

Definition : Java Runtime Environment (JRE) is a set of software tools and libraries that enables the execution of Java applications. It provides the necessary runtime support for Java programs to run on various devices and platforms. Components of Java Runtime Environment (JRE): Java Virtual Machine (JVM): Definition: The JVM is a crucial component of the JRE responsible for executing Java bytecode. Functionality: It interprets Java bytecode or, in some cases, uses Just-In-Time (JIT) compilation to translate bytecode into native machine code for improved performance. Importance: JVM abstracts the underlying hardware, allowing Java programs to be platform-independent. Class Libraries: Definition: JRE includes a set of precompiled classes and methods that Java applications can utilize. Functionality: These classes cover a wide range of functionalities, from basic data structures to networking. Importance: Class libraries provide a foundation for developers, offering reusable code