Skip to main content

Java Exception Handling MCQ Test

  Loading…

Interface Inheritance

In Java, interfaces can extend other interfaces, enabling interface inheritance. This allows one interface to inherit the methods and constants of another interface. The child interface inherits all the abstract methods, default methods, and static methods of the parent interface.

Syntax:

interface ParentInterface {

    // Methods and constants

}


interface ChildInterface extends ParentInterface {

    // Additional methods and constants

}




Example:

interface Animal {

    void eat();

}


interface Dog extends Animal {

    void bark();

}


class Labrador implements Dog {

    public void eat() {

        System.out.println("Labrador is eating");

    }


    public void bark() {

        System.out.println("Labrador is barking");

    }

}


public class Main {

    public static void main(String[] args) {

        Labrador labrador = new Labrador();

        labrador.eat();

        labrador.bark();

    }

}



In this example:

- The `Animal` interface defines the `eat()` method.

- The `Dog` interface extends the `Animal` interface and adds the `bark()` method.

- The `Labrador` class implements the `Dog` interface, so it must provide implementations for both `eat()` and `bark()` methods.


Benefits:

- Interface inheritance promotes code reuse and supports the creation of a more structured and organized codebase.

- It allows for the implementation of a hierarchical structure for interfaces, facilitating better design and maintenance of the code.


Note:

- A class implementing a child interface must provide implementations for all abstract methods defined in both the child and parent interfaces.

- Interfaces can extend multiple interfaces, enabling multiple inheritance of type, but Java does not support multiple inheritance of implementation.

Comments

Popular posts from this blog

Passing and Returning Objects in Java Methods

Passing and Returning Objects in Java Methods In Java, objects can be passed as parameters to methods and returned from methods just like other primitive data types. This allows for flexibility and the manipulation of object state within methods. Let's explore how passing and returning objects work in Java. Passing Objects as Parameters When you pass an object as a parameter to a method, you are essentially passing a reference to that object. This means that changes made to the object inside the method will affect the original object outside the method.  Example: class Car {     String model;     Car(String model) {         this.model = model;     } } public class CarProcessor {     // Method to modify the Car object     static void modifyCar(Car car, String newModel) {         car.model = newModel;     }     public static void main(String[] args) {       ...

Understanding Constructors in Java: A Simple Guide with Examples and Analogies

  What is a Constructor in Java? In Java, a constructor is a special type of method that is used to initialize objects. When you create an object of a class, the constructor is called automatically. Its main job is to set the initial values of the object’s properties or perform any setup that the object needs before it can be used. Why Do We Need Constructors? You need constructors because: Initialization : Constructors are responsible for initializing an object when it is created. Automatic Execution : A constructor is automatically called when an object is created, so you don’t have to manually initialize every property. Simplifying Object Creation : It simplifies object creation by providing default values or custom initialization. Where Do Constructors Fit in Java? Constructors fit within a class. They are used whenever a new object of that class is created, and they allow the object to be initialized. Constructors must have the same name as the class, and they don't have a re...