Skip to main content

Socket (TCP & UDP) communication in Java

Socket communication in Java enables communication between two endpoints over a network. There are two main types of sockets: TCP sockets and UDP sockets. Let's explain both types with examples: TCP Socket Communication: 1. **Server Side**:    - The server creates a `ServerSocket` object to listen for incoming connections on a specific port.    - When a client connects, the server accepts the connection and creates a `Socket` object to communicate with the client.    - The server reads from and writes to the socket's input and output streams to communicate with the client. import java.io.*; import java.net.*; public class TCPServer {     public static void main(String[] args) throws IOException {         ServerSocket serverSocket = new ServerSocket(12345);         System.out.println("Server started. Waiting for client...");         Socket clientSocket = serverSocket.accept();         System.out.println("Client connected.");         BufferedReader in = new Bu

Thread interruptions and synchronization

 Thread interruptions and synchronization are important concepts in Java concurrency for managing and controlling the execution of threads in a multi-threaded environment.


Thread Interruptions:

1. Interrupting Threads:

   - Java provides a mechanism to interrupt a thread's execution using the `interrupt()` method.

   - When a thread is interrupted, it receives an `InterruptedException` which can be caught and handled.


2. Handling Interruptions:

   - Threads can check whether they have been interrupted using the `interrupted()` method or `isInterrupted()` method.

   - They can respond to interruptions by gracefully stopping their execution or cleaning up resources.


3. Interrupting Thread Execution:

   - Interrupted threads should clean up resources and terminate their execution in a controlled manner.


Synchronization:


1. Thread Safety:

   - Synchronization ensures that multiple threads can safely access shared resources without interference or data corruption.

   - It prevents race conditions and ensures data consistency.


2. Synchronized Blocks:

   - Java provides the `synchronized` keyword to define critical sections of code that can be accessed by only one thread at a time.

   - Synchronized blocks can be used to lock access to critical sections and prevent concurrent modification of shared resources.


3. Locks:

   - Java also provides explicit lock objects (`Lock` interface and `ReentrantLock` class) for more fine-grained control over synchronization.

   - Locks allow threads to acquire and release locks explicitly, providing greater flexibility and control.


Example:



class MyThread extends Thread {

    public void run() {

        try {

            // Simulate some task

            for (int i = 0; i < 5; i++) {

                System.out.println("Thread running: " + i);

                Thread.sleep(1000); // Simulate work

            }

        } catch (InterruptedException e) {

            // Handle interruption

            System.out.println("Thread interrupted!");

        }

    }

}


public class Main {

    public static void main(String[] args) {

        MyThread thread = new MyThread();

        thread.start();


        // Interrupt the thread after 3 seconds

        try {

            Thread.sleep(3000);

            thread.interrupt();

        } catch (InterruptedException e) {

            e.printStackTrace();

        }

    }

}



Output (Example):



Thread running: 0

Thread running: 1

Thread running: 2

Thread interrupted!


Conclusion:

Thread interruptions and synchronization are essential concepts in Java concurrency for managing and controlling the execution of threads. Understanding how to handle thread interruptions gracefully and how to use synchronization mechanisms effectively is crucial for writing reliable and thread-safe multi-threaded applications in Java.

Comments

Popular posts from this blog

Method Overloading in Java

Method Overloading in Java Method Overloading  is a feature in Java that allows a class to have multiple methods with the same name but different parameter lists. The methods can have a different number or types of parameters. The decision on which method to invoke is made by the compiler based on the arguments provided during the method call.  Example: public class Calculator {     // Method to add two integers     public int add(int a, int b) {         return a + b;     }     // Method to add three integers     public int add(int a, int b, int c) {         return a + b + c;     }     // Method to add two doubles     public double add(double a, double b) {         return a + b;     }     // Method to concatenate two strings     public String concatenate(String str1, String str2) {         return str1 + str2;     } } Method Overloading in Action: public class Main {     public static void main(String[] args) {         Calculator calculator = new Calculator();         // Overloaded meth

Java Runtime Environment (JRE)

Definition : Java Runtime Environment (JRE) is a set of software tools and libraries that enables the execution of Java applications. It provides the necessary runtime support for Java programs to run on various devices and platforms. Components of Java Runtime Environment (JRE): Java Virtual Machine (JVM): Definition: The JVM is a crucial component of the JRE responsible for executing Java bytecode. Functionality: It interprets Java bytecode or, in some cases, uses Just-In-Time (JIT) compilation to translate bytecode into native machine code for improved performance. Importance: JVM abstracts the underlying hardware, allowing Java programs to be platform-independent. Class Libraries: Definition: JRE includes a set of precompiled classes and methods that Java applications can utilize. Functionality: These classes cover a wide range of functionalities, from basic data structures to networking. Importance: Class libraries provide a foundation for developers, offering reusable code