Skip to main content

Socket (TCP & UDP) communication in Java

Socket communication in Java enables communication between two endpoints over a network. There are two main types of sockets: TCP sockets and UDP sockets. Let's explain both types with examples: TCP Socket Communication: 1. **Server Side**:    - The server creates a `ServerSocket` object to listen for incoming connections on a specific port.    - When a client connects, the server accepts the connection and creates a `Socket` object to communicate with the client.    - The server reads from and writes to the socket's input and output streams to communicate with the client. import java.io.*; import java.net.*; public class TCPServer {     public static void main(String[] args) throws IOException {         ServerSocket serverSocket = new ServerSocket(12345);         System.out.println("Server started. Waiting for client...");         Socket clientSocket = serverSocket.accept();         System.out.println("Client connected.");         BufferedReader in = new Bu

Wrapper classes

Wrapper classes in Java are used to convert primitive data types into objects (i.e., wrapping primitive values) so that they can be included in Java collections, passed as method arguments where objects are required, and used in other situations where objects are needed instead of primitives. Each primitive data type in Java has a corresponding wrapper class. Here are the wrapper classes for primitive data types:


1. Byte: `java.lang.Byte`

2. Short: `java.lang.Short`

3. Integer: `java.lang.Integer`

4. Long: `java.lang.Long`

5. Float: `java.lang.Float`

6. Double: `java.lang.Double`

7. Character: `java.lang.Character`

8. Boolean: `java.lang.Boolean`


Wrapper classes provide methods to perform various operations on the wrapped primitive value, such as converting it to other data types, comparing values, and parsing strings to primitive values. They also provide constants for representing the maximum and minimum values of the corresponding primitive data type.


Here's an example demonstrating the usage of wrapper classes:

public class WrapperExample {

    public static void main(String[] args) {

        // Using wrapper classes to convert primitive data types to objects

        Integer intValue = Integer.valueOf(10);

        Double doubleValue = Double.valueOf(5.5);

        Character charValue = Character.valueOf('A');

        Boolean boolValue = Boolean.valueOf(true);


        // Using wrapper classes to perform operations

        int sum = intValue + Integer.valueOf(20); // Unboxing intValue to int

        double product = doubleValue * Double.valueOf(2.0); // Unboxing doubleValue to double


        // Using wrapper class constants

        int maxIntValue = Integer.MAX_VALUE;

        double minDoubleValue = Double.MIN_VALUE;


        // Printing values

        System.out.println("Sum: " + sum);

        System.out.println("Product: " + product);

        System.out.println("Max Integer Value: " + maxIntValue);

        System.out.println("Min Double Value: " + minDoubleValue);

    }

}

In this example:

- We create wrapper class objects using the `valueOf()` method.

- We perform operations using both primitive values and wrapper class objects. Automatic unboxing is performed to convert wrapper class objects to primitive values when necessary.

- We access constants representing the maximum and minimum values of primitive data types using wrapper class constants.

Comments

Popular posts from this blog

Method Overloading in Java

Method Overloading in Java Method Overloading  is a feature in Java that allows a class to have multiple methods with the same name but different parameter lists. The methods can have a different number or types of parameters. The decision on which method to invoke is made by the compiler based on the arguments provided during the method call.  Example: public class Calculator {     // Method to add two integers     public int add(int a, int b) {         return a + b;     }     // Method to add three integers     public int add(int a, int b, int c) {         return a + b + c;     }     // Method to add two doubles     public double add(double a, double b) {         return a + b;     }     // Method to concatenate two strings     public String concatenate(String str1, String str2) {         return str1 + str2;     } } Method Overloading in Action: public class Main {     public static void main(String[] args) {         Calculator calculator = new Calculator();         // Overloaded meth

Java Runtime Environment (JRE)

Definition : Java Runtime Environment (JRE) is a set of software tools and libraries that enables the execution of Java applications. It provides the necessary runtime support for Java programs to run on various devices and platforms. Components of Java Runtime Environment (JRE): Java Virtual Machine (JVM): Definition: The JVM is a crucial component of the JRE responsible for executing Java bytecode. Functionality: It interprets Java bytecode or, in some cases, uses Just-In-Time (JIT) compilation to translate bytecode into native machine code for improved performance. Importance: JVM abstracts the underlying hardware, allowing Java programs to be platform-independent. Class Libraries: Definition: JRE includes a set of precompiled classes and methods that Java applications can utilize. Functionality: These classes cover a wide range of functionalities, from basic data structures to networking. Importance: Class libraries provide a foundation for developers, offering reusable code