Skip to main content

Java Exception Handling MCQ Test

  Loading…

The catch Blocks

 The `catch` blocks in Java are used to handle exceptions that occur within a `try` block. Each `catch` block specifies the type of exception it can handle, allowing you to provide different handling logic for different types of exceptions.


Syntax:


try {

    // Code that may throw an exception

} catch (ExceptionType1 ex1) {

    // Code to handle ExceptionType1

} catch (ExceptionType2 ex2) {

    // Code to handle ExceptionType2

} finally {

    // Cleanup code (optional)

}

```


Explanation:

- Each `catch` block specifies the type of exception it can handle, denoted by `ExceptionType`. If an exception of that type (or a subtype) occurs in the `try` block, the corresponding `catch` block is executed.

- You can have multiple `catch` blocks to handle different types of exceptions.

- The order of `catch` blocks is important, as Java checks them sequentially from top to bottom. It's recommended to catch subclasses before their superclasses to avoid unreachable code warnings.

- If an exception occurs that is not caught by any of the `catch` blocks in the `try` block, it propagates up the call stack to the calling method or terminates the program if unhandled.


 Example:


public class CatchBlockExample {

    public static void main(String[] args) {

        try {

            int result = 10 / 0; // This will throw ArithmeticException

            System.out.println("Result: " + result); // This line will not be executed

        } catch (ArithmeticException e) {

            System.out.println("An arithmetic exception occurred: " + e.getMessage());

        } catch (Exception e) {

            System.out.println("An exception occurred: " + e.getMessage());

        } finally {

            System.out.println("Finally block executed.");

        }

    }

}


In this example, the `try` block attempts to perform division by zero, which throws an `ArithmeticException`. The first `catch` block handles this specific type of exception. If any other type of exception occurs, it is caught by the second `catch` block, which handles exceptions of type `Exception` (the superclass of all exceptions).

Analogy:

Think of `catch` blocks as safety nets deployed along a risky journey. Each safety net is designed to catch specific types of falls or mishaps. If one safety net fails to catch you, another one is there to prevent your descent into chaos. Finally, after navigating the hazards, you reach the `finally` block, where you can assess the situation and continue on your path.

Comments

Popular posts from this blog

Iterators and Collections

In Java, iterators are objects that allow for sequential access to the elements of a collection. The Java Collections Framework provides the Iterator interface, which defines methods for iterating over collections such as lists, sets, and maps. Here's an explanation of iterators and their relationship with collections, along with examples: Iterator Interface: The Iterator interface provides methods to iterate over the elements of a collection sequentially: - boolean hasNext(): Returns true if there are more elements to iterate over. - E next(): Returns the next element in the iteration. - void remove():  Removes the last element returned by `next()` from the underlying collection (optional operation). Collections and Iterators: 1. Collection Interface:    - Collections represent groups of objects, such as lists, sets, and maps.    - They provide methods for adding, removing, and accessing elements. 2. Iterator Usage:    - Collections implement the Iter...

The Collection Interface.

  The Collection Interface.