Skip to main content

Java Exception Handling MCQ Test

  Loading…

Dynamic method dispatch

Dynamic method dispatch is a mechanism in Java where the method to be executed is determined at runtime rather than at compile time. It is also known as runtime polymorphism or late binding.

In Java, dynamic method dispatch is achieved through method overriding, where a subclass provides a specific implementation of a method that is already present in its superclass. When a method is invoked on an object, the JVM determines which version of the method to execute based on the actual type of the object at runtime.

Here's how dynamic method dispatch works:

1. Method Override: Subclasses can override methods defined in their superclass to provide specialized implementations. The subclass method must have the same signature (name and parameters) as the superclass method.

2. Runtime Binding: When a method is called on an object, the JVM determines the appropriate method implementation to execute based on the actual type of the object at runtime.

3. Polymorphic Behavior: Dynamic method dispatch allows for polymorphic behavior, where the same method call can exhibit different behavior depending on the actual type of the object.


Example:


class Animal {

    void makeSound() {

        System.out.println("Animal makes a sound");

    }

}


class Dog extends Animal {

    void makeSound() {

        System.out.println("Dog barks");

    }

}


class Cat extends Animal {

    void makeSound() {

        System.out.println("Cat meows");

    }

}


public class Main {

    public static void main(String[] args) {

        Animal animal1 = new Dog(); // Upcasting

        Animal animal2 = new Cat(); // Upcasting


        animal1.makeSound(); // Calls Dog's makeSound() method

        animal2.makeSound(); // Calls Cat's makeSound() method

    }

}



In this example:

- The `makeSound()` method is overridden in both the `Dog` and `Cat` subclasses.

- When `makeSound()` is called on `animal1` and `animal2`, the JVM dispatches the call to the appropriate subclass method based on the actual type of the object (`Dog` or `Cat`) at runtime.


Dynamic method dispatch enables polymorphic behavior in Java, allowing for flexibility and extensibility in object-oriented programming.

Comments

Popular posts from this blog

Passing and Returning Objects in Java Methods

Passing and Returning Objects in Java Methods In Java, objects can be passed as parameters to methods and returned from methods just like other primitive data types. This allows for flexibility and the manipulation of object state within methods. Let's explore how passing and returning objects work in Java. Passing Objects as Parameters When you pass an object as a parameter to a method, you are essentially passing a reference to that object. This means that changes made to the object inside the method will affect the original object outside the method.  Example: class Car {     String model;     Car(String model) {         this.model = model;     } } public class CarProcessor {     // Method to modify the Car object     static void modifyCar(Car car, String newModel) {         car.model = newModel;     }     public static void main(String[] args) {       ...

Why is String[] args necessary in main() method in Java?

  Why is String[] args necessary in main() method in Java? In Java, the main method serves as the entry point for the program. The correct syntax for the main method is: public static void main (String[] args) { System.out.println( "Hello, Java!" ); } 🔹 Breaking it down: public → Accessible from anywhere. static → No need to create an object of the class to run it. void → No return value. main → Special method recognized by the JVM as the starting point. String[] args → Stores command-line arguments (optional but required by JVM). Why Can't We Skip String[] args ? JVM looks for main(String[] args) When you run a Java program, the JVM searches for the main method with exactly this signature : public static void main (String[] args) If you change or remove String[] args , the JVM cannot find the correct main() method and throws a runtime error (NoSuchMethodError). Java Specification Requires It The Java Language Specification (JLS) defines that main...